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Classical billiards in a rotating boundary 

D B Fairlie and D K Siegwart 
Department of Mathematical Sciences, University of Durham, South Road, Durham DHl  
3LE, UK 

Received 22 October 1987 

Abstract. As a specific example of billiards in a moving boundary, we discuss the classical 
motion on a circular table rotating uniformly about a point on its edge. Computer evidence 
for periodic and chaotic motion is displayed and we expose the origin of the chaotic motion 
as due to the effects of curvature of trajectories in the rotating frame. 

1. Introduction 

There have been many investigations in recent years of the classical billiard problem 
(elastic collisions with a fixed boundary of a freely moving point particle) in various 
geometries with a view to understanding the phenomena giving rise to chaotic motion. 
Variations have included polygonal boundaries with discontinuities in tangent [ 13 
boundaries with discontinuities in curvature (stadium of Bunimovich) [2] boundaries 
with a cusp [3] and inclusion of magnetic fields [4] to give a time-reversal asymmetric 
system [5]. The essential feature of all these systems is that, when projected from a 
given point on the boundary, the angle of return of the billiard after the first bounce 
is not a continuous function of the angle of projection, for a given energy, though the 
mechanism whereby this is achieved varies from case to case. All of these systems for 
the study of two-dimensional chaotic motion have the advantage over the mathemati- 
cally simpler Henon attractor, which is just a quadratic map, of arising from idealised 
physical situations. The system which we present here is another variant, which 
combines mathematical simplicity (the boundary is C”)  with physical realisation, and 
incorporates time-reversal non-invariance. I t  is the motion of a billiard on a smooth 
circular table which is rotating with uniform angular velocity about a point, taken for 
simplicity on the edge of the circle, about an axis perpendicular to the plane of the 
table. It is interesting to recall the work of Birkhoff [6]: ‘Any Lagrangian system with 
two degrees of freedom is isomorphic with the motion of a particle on a smooth surface 
rotating uniformly about a fixed axis and carrying a conservative field of force with 
it’. Indeed the system under consideration, in the frame of the table, is equivalent 
to the motion of an electron in a constant vertical magnetic field and in a linear 
electric field. 

2. The equations of motion 

It is convenient to work in a frame rotating with the table, and to parametrise the x, y 
coordinates of the billiard in that frame by the complex variable z = x + iy. Taking the 
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billiard of unit mass and  scaling z, t so that the circle has unit radius, and the angular 
velocity is also unity, then the equation of motion, using the standard transformation 
to a rotating frame, is just 

z + 2 i z - z  = O  (1) 

with general solution 

z = ( a  + bt )  e-i‘ 

where a and b are complex constants. 
We may take the equation of the boundary to be 

I z - l l = l  (3) 

so that the axis of rotation lies at the point (0,O) on the circumference of the circle. 
Equation ( 2 )  is just the transformation to the rotating frame of rectilinear motion. The 
reason for working in the rotating frame is that the conditions at  the bounce are easier 
to formulate: if i‘ denotes the velocity of the particle after a bounce then 

z ’ = - q z - 1 ) 2  (4) 

at the boundary. Equation (4) is just an algebraic way of stating that components of 
velocity tangential to the circle are unchanged at a collision with the boundary, whereas 
perpendicular components are reflected. 

The Lagrangian from which equation (1) may be derived is 

lzI2+ Iz12+i(iz - ZZ) (5) 

and  the motion may be interpreted as that of a charged particle in a Lorentz force 

F = z -2iz 

i.e. that arising from a constant magnetic field of magnitude 2 perpendicular to the 
plane, and a linear electric field directed radially outwards. The associated Hamiltonian 
density is 

H = p p  + i ( qp - qp ) 

q = z  p = z + i z = c j + i q .  (7 )  

( 6 )  

where 

Note that the Hamiltonian is a Hermitian, rather than symmetric quadratic form as a 
consequence of the lack of time-reversal invariance (we are supposing that in the 
reversed motion the angular velocity of rotation remains the same). 

This system gives rise to three related constants of the motion: an energy 

H = lz/2 - Iz12 = 1412  - I q 1 ?  (8) 
a momentum 

p = IPI 

and an angular momentum 

A = i ( qp - qp) = i ( ?z - z l )  + 2 1 z 1’ 
H = P’+A. 

( 9 )  
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The energy remains conserved throughout: the momentum and angular momentum 
change at  each collision 

(12) 6A = i(z’-  z +  i - i’). 

When the particle is on the boundary we may parametrise 

z = 1 + ele = 2 ele’’ cos( 0/2)  lzl = U. 

Then from (8) 

u2 - 4 cos2( 6/2) = 2K - 4 = constant 

where K is the kinetic energy of the particle at 0 = 0. 

3. Fixed points and periodic orbits 

The fixed points and periodic orbits (n-cycles) of a Hamiltonian system reveal much 
about the dynamics of the system, and in particular the study of the periodic orbits is 
relevant to the quantisation of the system, and the stability is relevant to the nature 
of the eigenvalues. In one-dimensional maps the bifurcation of n-cycles into larger n- 
cycles occurs as an  infinite sequence of period doublings as a parameter is varied. 
Here we have a two-dimensional conservative system, with a correspondingly richer 
set of possibilities. The general nature of such maps has been discussed at great length 
by Greene et a1 [7]. In this problem the specific two-dimensional map is that from 
(eo, Go) to ( e , ,  where Bo is the initial angle on the circle, Go the angle of the initial 
velocity with the tangent at  eo, and e l ,  i,bl the corresponding angles at the next 
intersection of the trajectory with the boundary (figure 1). If this map is denoted by 

f: ( 0 0 , $ 0 ) + ( 0 , , $ , )  

then for an  n-cycle 

~ ( 0 ,  J I )  = (0, $1. 
Fixed points o f f  occur only when the energy of the system is sufficiently low for 
closure of a trajectory: they also necessitate a zero change in the angular momentum 
(12), i.e. 

) sin 0 = 0 (2  5 e-ie 

i.e. 0 = 0, T or z = iu e-“ ,  the velocity 
(14) 

at  collision is tangential. 

Figure 1. A typical trajectory and reflection in the rotating frame. 
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Figure 2. A 1-cycle as seen in the laboratory frame. 

In fact the only viable possibility is 8 = 0, which may be seen by a symmetry 
argument, or else algebraically as follows. The condition for the trajectory to cross at 
time T on the circle at angle 8 is, from (2), 

cos( 8/2) = [2 e“” cos( 8/2) + bT]  e-lT (15) 

(16) 

2 eit3/2 

Initial velocity = -2i cis"  COS(^/^) + b = final velocity = -2i eie” COS( 812) + b e- iT 

since the velocity is tangential for 8 # 0, T. These equations have no non-trivial solution 
unless 8 =0, when (16) is replaced by 

b = -6 e- iT (17)  

obtained by equating the initial velocity at 8 = 0 to the velocity after the first bounce. 
Then (15) and (17) are compatible and give 

lb( T = 4 sin( T/2). (18) 

This equation can also be derived from simple geometrical considerations in the 
laboratory frame. 

lbl is the speed of the particle in the laboratory frame. From figure 2 the circle will 
have turned through an angle T in the time the particle takes to hit the boundary, 
after a trajectory of length lbl T Simple geometrical considerations give the condition 
(18) for the existence of a 1-cycle provided that it is energetically possible. It is also 
clear from figure 2 that a billiard projected from the opposite end of the diameter 
towards the origin with any velocity whatever will perform a 2-cycle: in the rotating 
frame this translates into a statement about the minimal kinetic energy: the angle + 
of projection is given by 

(19) v cos + = (2K)’l2 cos l+h = 2 

which requires K 3 2  for a solution, i.e. for the existence of a 2-cycle. 

4. Study of the first iteration of the map 

Many of the effects of the bounce maps may be understood and traced back to a 
property of one iteration of the map f :  (eo, + (e1 ,  +,) where the angles are those 
in figure 1. 
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For example, consider a set of trajectories starting from the same point on the 
edge, but at any angle t,bo between 0 and n. A typical set of trajectories is shown in 
figure 3. 

Some of the trajectories have ‘looped’, and split off from the main group; there is 
a discontinuity in the angle O1 which occurs at the trajectory which just glances the 
edge of the circle. There are two of these in this case. 

Here we see the origin of the chaotic motion from the discontinuities in the map 
f: the mechanism which produces them here is the curvature of the trajectories, a 
feature previously studied only in the case of magnetic fields [3]. However, there the 
picture is confused by the presence of other effects due to variations and discontinuities 
in the curvature of the boundaries. These trajectories are important, as they determine 
whether the system exhibits chaos, because they mark a point where nearby trajectories 
diverge. For many iterations this would extend to many points, and there would be 
‘mixing’. These special trajectories can only occur if the curvature of the trajectory is 
greater than the curvature of the circle. We can plot the mapping of figure 3 onto a 
phase portrait as in figure 4. 

The most comprehensive way of displaying the mapping is to consider not only 
trajectories with the same initial 8, but also to vary Bo as well as $,,. This results in 
figure 4 which displays the mapping as a two-dimensional curvilinear coordinate 

Figure 3. A set of trajectories originating from one point with the same energy but different 
initial directions, illustrating the discontinuity in the position of the next bounce. 

n 

90 

0 
-n 0 

60 

0 :  I 
O -n 
e l  

Figure 4. Phase portraits of the mapping f: ( B o ,  Jlo) + (e , ,  $,I 
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transformation. The more complex the mapping, the more likely it is to show chaotic 
behaviour. 

5. Perturbative methods of approximation 

We must look at  approximate solutions to the problem for special initial values in 
order to study the system further. Suppose that the energy of the particle is sufficiently 
large that the circle does not rotate very far before the particle hits the boundary. Then 
we can approximate T as small, so 

z (  T) -- ( a  + bT)( 1 - i T  -$T*) 

which gives 

- 2  Re( V e-") 
I V I *  + 2 Im( U e-") 

T =  

where V is the initial velocity of the particle in the rotating frame at t = O  and 
U = V+f i ( l  +e ie ) .  

When the particle is projected almost tangential to the edge of the circle 

2 VE 

COS e + ( i + V ) *  
T =  

where V = iu e i e  e iF .  Further calculations show that 

dE A E  
d 0  A 0  
_--- - - 0  

so E is a constant, but the angle 0 changes by A 0  each iteration where 

2 E V 2  

cos O + ( l + V ) *  
A 0  = 

u2 = 2(cos e +  K - 1). 

To see the change in E we must expand to powers of E' which requires expanding 
e- iT  to the T3 term. This requires a long calculation which was aided by a REDUCE 

program. The end result was the answer 

E = A v - ' ( ~ v *  + 4~ + 4 - 2 K y 3  

where A is a constant determined by the initial value of E = 40. 

6. Symmetries of the periodic orbits 

The equation of motion is invariant under the transformation t + - r ,  z+f, 
z +  i. This means that, for a periodic orbit, if z is a point of intersection with the 
boundary so will f, and thus the orbits are symmetric about the line 0 = 0. In particular 
this means that the 1-cycles must start from 0 = 0 (trajectories from 0 = 7~ must hit the 
boundary elsewhere). However, a study of the iterative mapping in figure 6 shows an  
asymmetry in the chaotic region: only for the integrable region can the time be reversed 
and tne symmetry about 0 = 0 deduced. 
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Figure 5. Phase portraits of the whole mapping region, as explained in 5 6. 

Figure 6. A small region expanded from the top centre of the phase portrait at K =4.5, 
as explained in B 6. 

The iteratives ( Bi, G i )  for several paths can be followed for a few hundred iterations. 
The resulting graph of + against 8 is a cross section through phase space. 

Figure 5 shows phase portraits of the whole mapping region + = O  to T and 
8 = -T to T for three energies: at K = 0.82 showing mostly undestroyed tori; at the 
critical energy K = 2  showing no tori; and at K = 4  showing mostly undestroyed 
tori for +s  3 ~ / 4  and destroyed tori for + & 3 ~ / 4 .  
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Figure 7. One point of a 3-cycle and the birth of a 12-cycle, as explained in § 6. 

Figure 8. The mapping at F as explained in 58 4 and 6. 

Figure 6 shows a small region expanded from the top centre of the phase portrait 
at K = 4.5. The remaining undestroyed tori have reflectional symmetry about 8 = 0, 
but where tori have been destroyed near hyperbolic points, this symmetry is broken. 

Figure 7 shows one point of a 3-cycle, and the birth of a 12-cycle: at K =3.11, 
before birth; at K = 3.095, after birth; and at K = 3.05, destruction of the 12-cycle tori. 

Figure 8 shows the mapping off  as explained in 0 4: at energies K = 1.8 and 2.1. 
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7. Conclusion 

An initial study of a very simple dynamical system, the rotating circular billiard table, 
demonstrates the expected features of chaotic systems: isolated n-cycles, bifurcations, 
chaotic regions, etc. The system, lacking time-reversal invariance, may have some 
consequence for the understanding of the quantum problem. The spectrum of the 
Hamiltonian (6) in the circular boundary is a challenging question. 
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